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INTRODUCTION

Urban energy (electricity and natural gas) distribution networks 
are closely related to the socio-economic and site-specific urban and 
geographical characteristics of the areas they serve. Overall, these energy 
systems include generation, transmission and distribution facilities. 
While generation and production units may be widely dispersed and 
transmission lines and pipelines may extend over long distances, 
distribution takes place in urban (built-up) areas, and is thus closely 
related to urban planning policies and practices. It is difficult and costly to 
modify these networks after the construction, particularly if underground 
and therefore their cost structure is a critical component in the decision-
making of policy makers. If realistic cost functions can be derived for 
these networks, then infrastructure costs can be forecasted accurately and 
resources can be allocated in more efficient ways, while providing reliable 
energy. 

Electricity and natural gas distribution costs have been analyzed in the 
literature, with determinants including input and output variables and 
a limited number of socio-economic and site-specific variables, such as 
population density. However, there are complex interactions among energy 
distribution systems and the characteristics of their service areas. Using 
more detailed explanatory variables, such as demographic characteristics, 
land-use patterns, soil conditions and street networks, is expected to 
provide sophisticated investment costs functions, which can be used for the 
economic assessment of the existing systems and infrastructure expansion 
plans. In addition to the cost structure, the presence of economies of scale 
and density is critical for public policies regarding local competition. More 
comprehensive cost functions could be used to assess whether there are 
specific local urban and geographic conditions leading to diseconomies of 
scale and density; and therefore conducive to competition, with multiple 
utilities operating at the local level. 
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This paper aims to reveal the economic structure of urban energy 
distribution networks in terms of capital cost models and economies of 
scale and density analysis. Infrastructure economies are crucial, but usually 
underestimated in urban planning.  The integration of the socio-economic, 
urban and geographic factors to cost models would not only contribute to 
the literature, where site-specific variables have often been neglected so far, 
but also provide guidance for planners and decision makers, who could 
then better forecast the infrastructure costs of alternative patterns of urban 
development, and therefore select more economically efficient energy 
infrastructure networks.  

LITERATURE REVIEW

Studies on the cost structure of electricity and natural gas systems date 
back to the 1970s. Early research on cost modeling focused on the whole 
industry; combining the generation, transmission, and distribution 
components. Research on the monopolistic structure of the industry and 
scale economies, then, shifted to each component separately. Market 
characteristics, such as numbers of customers and sales, were considered 
in all these studies. However, socio-economic, urban, geographic and 
environmental factors were often neglected in cost function estimations.

Literature on the Cost Structure of Electricity Systems 

Electricity studies include different combinations of the three components: 
generation, transmission and distribution. Henderson (1985), Roberts 
(1986), Kaserman and Mayo (1991), Gilsdorf (1995), Thompson (1997), 
and Kwoka (1996, 2002) examine the whole industry, including all 
three components, and point to the benefits of vertical integration and 
inseparability of the system. Gilsdorf (1995), in contrast, fails to observe 
subadditivity conditions for vertically-integrated electricity utilities, and 
refutes the hypothesis of a natural multiproduct monopoly. More recently, 
Fraquelli et al. (2005) identify some complementaries among different 
components, but only slight vertical economies for average-sized firms. 

The use of site specific variables is limited in these studies. Primeaux 
(1975), Weiss (1975), Meyer (1975), and Roberts (1986) do not take any 
urban, geographic or socio-economic variables into account, but only the 
inputs and outputs of the industry. Huettner and Landon (1978), Kaserman 
and Mayo (1991) and Kwoka (1996) use regional dummies; while Nelson 
and Primeaux (1988) and Thompson (1997) use service territory area, and 
Gilsdorf (1995), Kwoka (2002) and Fraquelli et al. (2005) consider density 
variable in addition to market characteristics. 

Some studies examine only electricity distribution costs, excluding 
generation and transmission components. In fact, distribution is the 
phase most-related to urban-level decision-making, thus, local urban, 
geographic and socio-economic variables are expected to play important 
roles in the economic structure of investments. Henderson (1985), Nelson 
and Primeaux (1988), Nemoto et al. (1993), and Salvanes and Tjotta (1998) 
analyze the monopolistic structure of the industry, and all studies, except 
for Nemoto et al. (1993), find evidence of natural monopoly. Meyer (1975), 
Neuberg (1977), and Clagett (1994) compare the costs and efficiencies of 
municipal, cooperative and private utilities, while the first two authors 
favoring municipal firms and the last one cooperative utilities. 
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Weiss (1975), Guldmann (1985a, 1988), Salvanes and Tjotta (1994), Filippini 
(1996, 1998), and Filippini and Wild (2001) observe economies of scale 
in electricity distribution utilities, while Yatchew (2000) and Filippini 
(1996, 1998) find that economies of scale vary with the size of the firm, 
and Nemoto et al. (1993) find economies of scale in the short run, but 
diseconomies in the long-run. 

Wells (1977), Huettner and Landon (1978), Guldmann (1985a, 1988), 
Filippini and Wild (2001), Folloni and Caldera (2001), Kwoka (2002), and 
Fraquelli et al. (2005) consider the impact on distribution costs of different 
measures of density, such as number of customers per network unit length, 
total population over the service area, etc. There are a few studies that 
include more detailed geographic and environmental variables, such as 
land use (Guldmann, 1988; Filippini and Wild, 2001; Kwoka, 2002),housing 
characteristics (Guldmann, 1988), and weather (Jamasb et al. 2012).

Literature on the Cost Structure of Natural Gas Systems

The development of studies on the cost modeling of natural gas is similar 
to electricity. Cost structure research started with production, and then 
shifted to transmission and distribution components. The number of 
studies, however, is more limited. Guldmann (1983, 1985b, and 1989) is 
among the first to econometrically analyze gas distribution costs, with 
a focus on the multiproduct, multidimensional character of the system. 
He shows that service densification contributes to economies of scale in a 
significant way, but market area size expansion contributes only slightly to 
economies of scale, while Fabbri et al. (2000) provide evidence for constant 
returns to scale. 

Density is the most used site-specific variable in natural gas distribution 
cost functions. Guldmann (1983, 1985b, and 1989), and Kim and Lee (1995) 
show that density is negatively related to costs, whereas Fabbri et al. (2000) 
find that population concentration has a positive effect, which is explained 
by the diseconomies resulting from urban congestion. Fabbri et al. (2000) 
also include average altitude, which appears to have a positive effect on 
costs. Bernard et al. (2002) take regional differences into account and find 
that the largest and the oldest region has the highest costs. In a recent 
study, Alaeifar et al. (2014) observe that economies of scale are unexploited 
for many Swiss gas distribution firms, except for the very large and high-
density ones, and that the optimum firm size can be achieved through firm 
expansion. 

Critical Review of the Literature

The literature substantially disregards socio-economic, urban and 
geographic factors of electricity and natural gas distribution costs, 
while focusing on traditional input (prices) and output (numbers of 
customers and amount of sales) variables in cost modeling. There are 
very few studies integrating density or service area into cost estimations. 
Urban characteristics and urban development patterns do affect energy 
distribution costs. However, the limited site-specific factors in earlier 
research cannot help decision makers and planners make inferences about 
the impacts of urban-related factors on energy investment costs, and 
accordingly, suggest resource-efficient and economically sound policies. In 
addition, the literature takes total costs into account, rather than focusing 
on its capital components, with a common use of the translog functional 
form in estimations. A detailed analysis of disaggregate cost components, 
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together with the exploration of alternative flexible functional forms such 
as Box-Cox, may contribute to more precise cost estimations. 

MODELING APPROACH

The modeling approach is predicated on the existence of a transformation 
function that summarizes the feasible substitutions of inputs and outputs, 
with:

								        (1)

where Q is the output vector representing service to different sectors, 
such as residential, commercial, industrial, public authorities, and street 
lighting, L is the labor input, K the capital input, and E the energy input 
which represents energy losses. A vector of site-specific variables, SH, can 
be added to the transformation function, with: 

 								        (2)

Utilities are regulated, with fixed output prices and the requirement to 
serve all customers in the service territory. Utilities, therefore, minimize 
their input costs: 

min C = pK K + pL L + pE E,					     (3)

where pK, pL, and pE are the prices of the capital, labor, and energy inputs, 
subject to the production constraint represented by Eq. (2). 

The cost function derived from the above cost minimization has the general 
form:

 								        (4)

where P= (pk, pL, pE) and K*, L*, E* are the optimal input values.

The focus of this research is on the modeling of the capital costs of the 
distribution system. The capital cost function is: 

			   					     (5)

Cost functions are estimated using the numbers of customers and sales 
in the different sectors (residential, commercial, industrial, and lighting), 
urban site-specific variables (density, built-up area, street pattern etc), 
geographic factors (soil type, water table depth, etc.), company specific 
variables (load factor) and input prices, with: 

Ci = F (Qi, SITE, G, COMPi) 					     (6)

where

Ci = Capital investment costs for system i (gas or electricity),
Qi = Vector of outputs (e.g. residential sales) in system i,
SITE = Vector of site-specific variables in that specific tax district,
G = Vector of geographic variables,
COMPi = Vector of company-specific variables for system i. 

Because there is no agreed-upon theory regarding the functional form 
of the capital cost function, both log-log and Box-Cox regressions will be 
considered. Among the possible alternative functional forms, linear form 
implies no transformations on any variable, but is ineffective in case of non-
linearity between dependent and independent variables. The double log 
(log-log) form implies logarithmic transformations on all the variables, and 
can deal with a specific form of non-linearity. The Box-Cox transformation, 
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𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   
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densification if 𝜀𝜀𝐷𝐷 < 1, with:  
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εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 
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0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 
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εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 
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on the other hand, represents a continuum of functional forms, and 
the transformation parameters are not pre-determined, that is, they are 
endogenously determined. When these parameters turn out equal to one, 
then the transformation is equivalent to the linear model, and when they 
turn out equal to zero, then it is equivalent to the log-log model. The Box-
Cox approach is flexible and considers a whole range of functional forms, 
allowing the data to determine the optimal form. 

The log-log regression is defined as: 

 								        (7)

The Box-Cox regression is defined as:

 								        (8)

where the variables          and          are defined by the transformations:		
	

					       			   (9)

The variables               are not B-C transformed. 

The cost elasticity           in the log-log form is the coefficient       of the 
corresponding independent variable, and is constant. The cost elasticity in 
the case of the Box-Cox equation, on the other hand, is a function which 
varies with different input/output values:  

 								        (10)

Both electricity and natural gas utilities are multi-product firms, since 
they provide different outputs to different customer groups: residential, 
commercial, industrial, etc. Economies of scale in multi-product firms 
are measured by ray economies of scale (εR), computed as the sum of the 
elasticity values for the different outputs. (Note that Baumol at al. define 
ray economies of scale as the inverse of the sum of the cost elasticites =    

  		

								        (11) 

Generally, economies of scale account for output expansion while holding 
density constant, that is, while expanding the service area at the same rate 
as the output, whereas economies of density, εD, consider output expansion 
within a fixed area, hence densification. Economies are achieved through 
densification if              , with:	

εD = εR + εDENS							       (12)

where εDENS is the density elasticity. Population density is a proxy for 
network size per customer (e.g., miles of lines per customer), because 
data on mileages of lines (electricity or gas) are not available at the local 
level. An increasing population density is therefore taken as equivalent to 
adding customers (and sales) to a fixed-length network. While the firm has 
no direct control over population density, it can certainly influence it with 
policies of network expansion, particularly the differentiated pricing of this 
expansion. 

DATA SOURCES

The data (company data, census and geographic) used in this study is 
retrieved from various sources. Company data characterize electricity 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 
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𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 
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𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  
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0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅
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(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 
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The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 
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𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 
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𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  
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0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
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εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 
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0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅
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0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
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𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 
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𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 
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 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
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𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸
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𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 
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(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 
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𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 
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and natural gas distribution companies serving various areas within 
the state of New York (NYS) in 1980, and include sales, number of 
customers, distribution plant investment, load factor and input prices. 
Geographically-detailed investment cost data for 1980 are used because 
they are available for this year and because more recent data are no longer 
provided by companies, due to competition and confidentiality concerns. 
Company data are geographically limited to the territories served. Plant 
and market data are available for tax districts, which are cities, villages, 
or towns. However, load factor and input prices are company-wide data, 
invariant across districts. The use of 1980 data is deemed acceptable 
because the technologies of distribution for both electricity and natural gas 
have not changed remarkably, as compared, for instance, with those for 
telecommunications (land line phones versus cell phones and the Internet). 
The American Society of Civil Engineers’ report on energy infrastructure 
supports this argument, which states that the electric grid and natural gas 
pipeline distribution systems are aging, and even some of them dates back 
to the 1880s (ASCE, Report Card for America’s Infrastructure, 2013).  

This might change in the future for electricity with a complete conversion 
to smart grid with distributed generation at the end-user level, which is not 
the case for current situation. The most significant conversion so far has 
targeted electric meters, which are being replaced by advanced metering 
infrastructure (AMI). However electric meters constitute only a limited 
portion of total distribution system capital costs (4% of the whole system 
in this study). The U.S. Energy Information Administration indicates 
that conversion to AMI has been implemented in less than one fourth of 
the whole U.S., with the conversion to AMI less than 5% in NYS (EIA, 
2012). Aside from meters, distribution systems continue to include, as 
always, overhead and underground lines, poles, underground conduits, 
transformers, and substations. In the case of natural gas, distribution 
system innovations are even more limited, since the network components 
are still pipelines, service lines, metering and pressure regulating stations.

Census data are derived from the U.S. Census of Population and Housing, 
which includes detailed information on population and housing, such as 
population age structure, education, income, housing characteristics and 
median house values. The same year Census data is used to provide time 
compatibility. Census data are available at different geographic hierarchical 
levels. Minor civil division (MCD) level, which comprises cities, villages 
and towns, provides a perfect match for the tax districts used for company 
data. Population density variable, derived from Census data, is significant 
in the electric cost model.   

Geographic data include land uses, soil types, topography, and street 
networks. All these data are processed with Geographic Information 
Systems (GIS). Land-use data are drawn from the U.S. Geological Survey’s 
(USGS) Geographic Information Retrieval and Analysis System (GIRAS). 
The major land-use categories are urban or built-up land (residential, 
commercial, industrial, etc.), agricultural land, forest land, water, wetland, 
etc. The share of each land use is computed by dividing the total area of 
each land use by the total area of the tax district, which adds up to one in 
each tax district. The built-up area variable is significant in the natural gas 
cost model.

The State Soil Geographic Database of the U.S. Department of Agriculture 
(STATSGO) is used for retrieving soil data. There are 169 different soil 
types in NYS. Gas pipes and underground electricity lines are buried; 
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hence soil is expected to have an effect on infrastructure costs. Workability, 
corrosivity, rock depth and water table depth are soil characteristics which 
may impact investment and maintenance. Workability is defined as a 
measure of the ease with which a soil is handled and traversed by ordinary 
construction equipment (Chambers, 1959, 14). For instance, coarse-grained 
soils are easier to handle in excavation operations than fine-grained soils 
with high moisture levels. Soil corrosion is the deterioration of metals and 
other materials brought about by the chemical, mechanical, and biological 
actions of the soil environment and all underground materials are subject 
to corrosion. Rock depth and water table depth are related to excavation 
and drainage. The shares of soil types are calculated by dividing the total 
area of each soil type by the area of the tax district. Topography data is 
derived from the USGS digital elevation model (DEM) files, which have 
16 slope groups ranging from 0% and 30% and over. The definition of 
steepness varies for different building and construction ordinances. Flat 
sites (0% - 5%) are easy for transportation and building construction, but 
they are problematic for drainage. Low slopes (5% - 10%) are considered as 
most suitable for urban development. Steep surfaces (10% - 30%) are hard 
to work with, and can be dangerous due to slope instability, and extremely 
steep slopes (30% and over) are unsuitable for urban development. Among 
all soil variables, corrosion has a significant effect in the electricity cost 
model, whereas water table depth does so in both the electricity and 
natural gas cost models.  

Street data are drawn from the Environmental Systems Research Institute 
(ESRI) street map database. The total street length, the total number of 
intersections, and the average street segment length (ratio of total street 
length to total number of intersections) are calculated for each tax district. 
The data reflect information in 1997. The use of this date is reasonable, 
because most of the growth has taken place in New York City (NYC), 
which is not considered in this study. Hence, changes in the street patterns 
of most places included in this study are most likely negligible. The 
number of street intersections is used in both electricity and natural gas 
cost model estimations. 

STUDY AREA AND SUMMARY DATA

Four NYS electricity and gas utilities are considered: Central Hudson Gas 
and Electricity Company (CH), Long Island Lighting Company (LILCO), 
Niagara Mohawk Power Corporation (NM), and Orange and Rockland 
Utilities (OR). The selection considered not only data availability, but 
also the characteristics of the utilities’ service areas. They serve the most 
populated and urbanized areas in NYS, such as Buffalo, Rochester, 
Syracuse, Albany, Niagara Falls, Long Beach, and Schenectady, which 
cover slightly more than half of the total State population after excluding 
NYC. The utility service areas also cover numerous small and medium 
sized settlements, besides large urban areas, thus providing variability in 
geographic unit size. Investment data are available for 1014 tax districts for 
electricity and 436 tax districts for natural gas. The number of tax districts 
and average historical value of the distribution plant for both electricity 
and natural gas are presented in Table 1. The variations in mean plant size 
reflect variations in market size and other factors across tax districts. 

Detailed historical plant data by vintage year and tax district have been 
provided by the New York State Division of Equalization and Assessment 
(NYSDEA). These vintage data have been weighted by the Handy-
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Table 1. Tax Districts with Electricity and 
Natural Gas Distribution Plants, and Mean 
Historical Distribution Plant Values, Source: 
Company Annual Reports - 1980

Company
Electricity Natural Gas

Number of Districts Mean Distribution Plant ($) Number of Districts Mean Distribution Plant ($) 

CH 85 1,577,402 37 678,255
LILCO 119 4,538,188 113 1,389,888
NM 753 1,119,132 243 1,137,234
OR 57 1,987,170 43 1,233,945

Figure 1. Geographic Distribution of Districts 
with Electricity Sales Data Source: NYSDEA 
and Company Annual Reports

Figure 2. Geographic Distribution of 
Districts with Natural Gas Sales Source: 
NYSDEA and Company Annual Reports 
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Whitman index and then summed up into replacement plant values.  
Market data, however, are available for fewer tax districts: sales and 
numbers of customers are available for electricity in 241 tax districts, 
and natural gas in 190 tax districts. The geographic distributions of these 
districts according to amounts of sales are illustrated in Figures 1 and 2. 
Although the tax districts with sales and customers data are limited, they 
include 52% of the NYS population (excluding NYC). 

Input prices are determined at the company level, and therefore the same 
price, for a given input, applies to all the districts served by the company. 
The price of labor is the average wage obtained by dividing the total 
payroll by the number of employees. Total capital costs are obtained by 
subtracting payroll and fuel purchases from the total annual revenues, 
and dividing this residual by the replacement value of the company plant. 
The input price of electricity is computed by dividing the total costs of 
fuels used in generation and of electricity purchases by the total amount 
of electricity sold. The input price of natural gas is similarly computed 
by dividing the costs of gas purchased by the amount purchased. The 
resulting prices are presented in Table 2. 

RESULTS

Capital Cost Model for Electricity Distribution 

The electricity distribution plant comprises overhead and underground 
lines, conduits, services, transformers, poles, and street lighting equipment. 
Electricity distribution investment costs (CE) are measured by the 
distribution plant replacement value, a function of outputs, input prices, 

Company
Electricity Natural Gas

Fuel Price $/kwh Capital Price $ Wage per 
Employee $ Fuel Price $/mcf Capital Price $ Wage per 

Employee $

CH 3.632 0.079 16,662 2.401 0.046 16,528
LILCO 3.436 0.109 17,753 2.781 0.067 20,550
NM 2.066 0.063 17,017 2.662 0.056 15,885
OR 3.433 0.084 16,005 2.435 0.095 15,336

Table 2. Fuel, Capital and Labor Input Prices 
for Electricity and Natural Gas Source: 
Company Annual Reports - 1980

Variable   Minimum Maximum Mean Std. Deviation

Total electricity investment capital cost 
CE ($)

13,968 319,335,460 11,246,511 29,383,157

Number of residential electricity 
customers NRE (#)

20 144,529 6,821 16,662

Residential electricity sales SRE (kWh) 167,697 1,041,919,003 43,503,227 107,788,769

Commercial-industrial electricity sales SCIE 
(kWh)

1,760 2,968,261,212 90,696,852 277,374,196

Price of fuel PFUEL ($) 2.07 3.63 3.14 0.59

Population density DENSA (pop./sq.m.) 14 103,058 3,517 7,202

Number of street intersections INTR (#) 13 15,114 751 1,659

Soil corrosivity SOILCORR (%) 2.78 99.9 78.14 29

Water table depth WATDEPTH (feet)   0.80 5.74 3.55 0.99

Table 3. Descriptive statistics for the 
electricity investment cost model (n=241)
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and site-specific characteristics. After extensive exploratory analyses, the 
selected model is:

CE = F(NRE, SRE, SCIE, PFUEL, DENSA, INTR, SOILCORR, WATDEPTH)	 (13)

The definitions and descriptive statistics for the variables in Eq. (13) are 
presented in Table 3. 

The regression results are presented in Table 4. The log-likelihood ratio test 
indicates that the Box-Cox form is superior to the log-log one. Investment 
costs increase with outputs, fuel price, soil corrosion and the number of 
intersections, but decrease with population density and water table depth. 
More intersections increase construction costs because more complex utility 

Coefficient
Models

Log-log Box-Cox(λ, θ)a

Constant 1.643 2.282

(2.02)b (1.45)

NRE 0.268 0.655

(3.16) (3.60)

SRE 0.547 0.424

(7.36) (5.95)

SCIE 0.117 0.121

(4.61) (4.50)

PFUEL 0.358 1.312

(1.98) (2.00)

DENSA -0.162 -0.307

(-6.09) (-5.38)

INTR 0.099 0.272

(2.07) (2.23)

SOILCORR 0.220 0.633

(3.02) (3.23)

WATDEPTH -0.204 -0.681

(-1.81) (-1.76)

λ 0.087

(0.004)c

θ 0.09

(0.012)c

R2 0.927 0.933

Log-likelihood -3741.02 -3736.37

H0: θ=λ=0, Chi-sq=8.49d, p>Chi-sq = 0.004

H0: θ=λ=1, Chi-sq=741.03, p>Chi-sq = 0.000

Table 4. Electricity Distribution Cost 
Function Estimates (n=241)
a Selected model
b t-statistics in parentheses
c p-value
d Log-likelihood test result
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layouts are required. Likewise, a higher corrosivity increases maintenance 
and replacement cost of underground components. The negative coefficient 
of the density variable can be explained by capital savings in dense 
areas, with shorter distribution lines as compared to low-density areas. 
An increasing water table depth decreases costs, because less drainage is 
needed. The higher the fuel price, the higher the need to reduce electricity 
losses through additional investments. Note that the prices of capital and 
labor are not included in the equation, because they were insignificant, 
possibly because the values for the four companies do not display enough 
variability. 

Cost elasticities at the sample mean (Table 5) show that residential sales 
have the highest elasticity, εSRE. A 1% increase in residential sales increases 
costs by 0.45%. The effects of residential customers (εSNRE) and fuel price 
(εPFUEL) are relatively close, with a 1% increase in any of these variables 
resulting in around 0.3% increase in costs. A 1% increase in soil corrosivity 
(εSOILCORR) increases costs by 0.2%. The effects of commercial-industrial sales 
(εSCIE), area density (εDENSA), number of intersections (εINTR), and water table 
depth (εWATDEPTH) have smaller impacts, with a 1% increase in any of these 
variables resulting in 0.1% - 0.2% changes in costs.

An electricity distribution utility may be considered as a multi-product 
firm, providing service to various customers (residential, commercial-
industrial, and lighting) with different product requirements. Ray 
economies of scale (Baumol et al., 1982) are measured by: 

εCE = εNRE + εSRE + εSCIE						      (14)

Using the Box-Cox function in Table 4, Eq. (14) becomes:

 								        (15)

Ray economies of scale are calculated at the sample mean, as well as for 
each individual observation (tax district). The value of 0.915 for εCE at the 
sample mean points to slight economies of scale achieved through system 
expansion at constant density. The lowest, highest, and average values of 
economies of scale for individual observations are 0.842, 0.990, and 0.912 
respectively, indicating slight economies of scale in all districts.  

Varying output levels are likely to affect economies of scale. The outputs 
are the numbers of residential customers, residential sales (kwh), and 
commercial-industrial sales (kwh). A parameter k is used to represent 
residential and commercial-industrial sales, which are assumed to 
expand at the same rate, while keeping residential customer size ZRE 
(ratio of residential sales to number of residential customers) constant. 

Elasticity Sample Mean
εNRE 0.327
εSRE 0.451
εSCIE	 0.137
εPFUEL 0.337
εDENSA -0.145
εINTR 0.112
εSOILCORR 0.215
εWATDEPTH -0.177Table 5. Electricity Distribution Cost 
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Therefore, the number of residential customers also expands at the same 
rate. Residential sales, commercial-industrial sales, and the number of 
residential customers are related to their mean sample value, with: (1) 
SRE=k*SREmean=k*43,503,227; (2) SCIE=k*SCIEmean =k*90,696,852; and (3) NRE=SRE/
ZRE=k*43,503,227/ZRE. Different output levels k are considered for the 
minimum, mean, and maximum values of ZRE. Figure 3 displays the 
variations of economies of scale,          with k, for ZREmin (3351), ZREmean (7572), 
and ZREmax (25689).  

Whatever ZRE, ray economies of scale decline (εCE increases) with an 
increasing output (k), suggesting that larger markets (i.e. larger cities) 
provide less opportunities for economies of scale.  For a given market 
size (k fixed), the larger ZRE the larger the economies of scale. When ZRE 
increases in a given market, the number of residential customers decreases. 
It is more expensive to serve areas where the number of customers is at 
a minimum, and therefore there are more opportunities to decrease costs 
by hooking up new customers and expanding sales. When the outputs 
increase ten-fold, εCE becomes very close to 0.959 for ZREmin. The elasticity 
curve of ZREmin has a horizontal asymptote, at εCE=0.963, meaning that 
economies of scale do not exceed 0.963. Thus, diseconomies of scale have 
not been observed in this sample. 

Changes in the economies of scale curves are assessed for the minimum, 
mean, and maximum levels of the following variables: fuel price, 
population density, number of intersections, soil corrosivity, and water 
table depth (Figure 4). The mean customer size, ZREmean= 7,572 is utilized in 
all cases. The value of εCE never exceeds 1. Economies of scale vary from 
0.90 to 0.94 when considering the minimum and maximum fuel prices. 
The εCE curve is almost horizontal for the maximum population density, 
which suggests that, at high densities, cost elasticity is almost independent 
of the output, with an approximate value of 0.97. The minimum density 
yields much higher economies of scale, with εCE ranging from 0.80 to 
0.89. Economies of scale vary from 0.91 to 0.97 when considering the 
minimum and maximum numbers of street intersections. Soil corrosivity 
has an outlier minimum value of 2.78 percent, which leads to an almost 
horizontal curve at εCE=0.97. At the mean and maximum corrosivity levels, 
the elasticity curves are very close to each other, between 0.90 and 0.93. 
When the water table depth is at its maximum value, economies of scale are 
lowest, with εCE=0.935. 
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Figure 3. Economies of Scale for Electricity 
Distribution, εCE, versus Output Parameter k.
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The economies of density, εDE, represent the effects of both service 
densification and expansion, with: 

εDE = εCE + εDENSA						          	  (16)

Using the Box-Cox function in Table 4, Equation (16) becomes:

 								        (17)

The value of εDE at the sample mean is 0.771, pointing to higher economies 
of density, which are also calculated for each individual tax district, with 
minimum, maximum and average values at 0.7, 0.812, and 0.759. 
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Figure 4. Economies of Scale, εCE, versus Output Parameter, k, for Different 
Levels of the Following Variables: (a) Fuel Price, (b) Population Density, (c) 
Number of Street Intersections, (d) Soil Corrosivity, (e) Water Table Depth
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The variations of εDE with the output parameter k are analyzed for the 
minimum, mean, and maximum values of customer size, ZRE (Figure 5). For 
any value of ZRE, economies of density decline (εDE increases) with output. 
For a given market size k, the larger ZRE the larger εDE. Areas with a smaller 
number of customers probably provide more opportunities for savings by 
hooking up new infill customers. The εDE curve for ZREmin has a horizontal 
asymptote at εDE=0.877, which can be compared to the limit value of 0.963 
for εCE.  

Changes in economies of density are assessed for variations in the other 
variables: fuel price, population density, number of street intersections, 
soil corrosivity, and water table depth. These changes are depicted in 
Figure 6. Higher fuel prices lead to higher economies of density (lower 
curve). Low-density areas have the highest economies of density, because 
these areas are very expensive to serve, and therefore increasing their 
densities by adding customers through “infill” is likely to significantly 
reduce unit costs. Conversely, higher densities decrease costs, but provide 
fewer opportunities for larger economies of scale. Areas with more street 
intersections have stronger economies of density: a larger number of 
intersections provide more flexibility in extending the network to connect 
new customers. Maximum soil corrosivity leads to the largest economies 
of density: expansion of lines through densification require shorter lines, 
less exposed to corrosion, hence the higher economies. A deeper water 
table leads to fewer operational costs, which may limit the potential gains 
through expansion with densification.

Capital Cost Model for Natural Gas Distribution 

The natural gas distribution plant comprises mains, services, measurement 
and regulation stations, and structure and improvements. Natural gas 
distribution investment costs (CG) measured by the distribution plant 
replacement value, are a function of outputs, input prices, and site-specific 
characteristics. After extensive exploratory analyses, the selected model is:

CG = F(NRG, SRG, SCIG, PFUEL, ABLTP, INTR, WATDEPTH)			   (18)

The definitions and descriptive statistics for the variables in Eq. (18) are 
presented in Table 6.

The regression results are presented in Table 7. The log-likelihood ratio test 
indicates that the Box-Cox form is superior to the log-log one. The urban-
related variables, built-up area and number of intersections, have positive 
effects on costs, as expected. Intersections make construction work more 

Figure 5. Economies of Density for Electricity 
Distribution, εDE, versus Output Parameter k.



URBAN ENERGY INFRASTRUCTURE METU JFA 2016/1 75

complex and necessitate more capital.  A deeper water table (as in the case 
of electricity) decreases operational costs due to less need for drainage, and 
therefore has a negative effect on costs. An increase in fuel price increase 
costs, as investments are made to stem gas losses. The higher the price of 
natural gas, the stronger the need to reduce gas losses through additional 
investments. Prices of capital and labor are not included in the equation, as 
in the case of the electricity model, because they were insignificant, most 
likely because of a lack of sufficient variability across the four companies. 

Cost elasticities at the sample mean are presented in Table 8. Fuel price 
has the highest elasticity (εPFUEL): when it increases by 1%, cost increases 

Figure 6. Economies of Density, εDE, versus Output Parameter, k, for 
Different Levels of the Following Variables: (a) Fuel Price, (b) Population 
Density, (c) Number of Street Intersections, (d) Soil Corrosivity, (e) Water 
Table Depth
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by 1.85%. Residential sales have the second highest elasticity, with εSRG= 
0.46. Water table depth has also a relatively high elasticity (0.34), but with a 
negative sign. The elasticities of the number of residential customers (εNRG 
= 0.154), commercial-industrial sales (εSCIG = 0.067), built-up area (εABLTP = 
0.110), and the number of intersections (εINTR = 0.187) are close to each other.

Ray economies of scale are measured by the effect of increases in sales 
and numbers of customers at constant density. The built-up area variable 
captures area expansion, and increasing it keeps density constant. It 
follows that:

εCG = εNRG + εSRG + εSCIG + εABLTP					     (19)

Using the Box-Cox function in Table 7, Eq. (19) becomes:

 								        (20)

εCG has a value of 0.792 at the sample mean, pointing to economies of scale. 
The lowest, highest, and average values of εCG computed over all individual 
tax districts (190) are 0.699, 0.998, and 0.818, respectively. Economies of 
scale get very close to but never exceed 1.

The variations in economies of scale with output are analyzed in the 
same way as for electricity, using  the minimum, ZRGmin, mean, ZRGmean, 
and maximum, ZRGmax, values of the average residential customer 
size.  The output variables are defined as follows: (1) SRG=k*SRGmean 
=k*411,433; (2) SCIG=k*SCIGmean =k*311,081; and (3) NRG=SRG/ZRG=k*411,433/
ZRG. The resulting εCG curves are presented in Figure 7. Whatever ZRG, 
economies of scale decline (εCG increases) with an increasing output, 
as in the case of electricity. Larger markets provide less opportunities 
for economies of scale. If market size (k) is fixed, the smaller ZRG the 
smaller the economies of scale. Increasing values of ZRG imply smaller 
numbers of residential customers. Areas with less customers are more 

Table 6. Descriptive statistics for the natural 
gas investment cost model (n=190)

Variable   Minimum Maximum Mean Std. Deviation

Total natural gas 
investment capital cost 
CG ($)

34,874 108,274,446 7,656,032 14,548,161

Number of residential 
natural gas customers  
NRG (#)

4 71,583 4,471 8,515

Residential natural gas 
sales SRG (kWh)

8 7,493,316 411,433 859,346

Commercial-industrial 
natural gas sales         SCIG 
(mcf)

4 5,541,700 311,081 667,499

Price of fuel PFUEL ($)   2.4 2.78 2.64 0.16

Built-up area ABLTP (sq 
miles)

0.04 134 6.51 14.45

Number of street 
intersection s INTR (#)

13 15,114 851 1,821

Water table depth 
WATDEPTH (feet)

0.8 5.74 3.62 0.86
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function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 
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expensive to serve, hence provide more opportunities for cost reductions 
with service expansion.  The limit value of εCG is 0.85 with ZRGmin=3. Thus, 
there are always economies of scale for gas distribution for any customer 
size value when all the other variables are at their sample mean values. 

Coefficient
Models

Log-log Box-Cox(λ, θ)a

Constant 4.915 -21.761

(6.68)b ( -2.12)

NRG 0.195 0.916

(3.95) ( 3.77)

SRG 0.36 1.256

(8.46) (11.34)

SCIG 0.085 0.192

(3.32) (2.36)

PFUEL 2.511 39.715

(4.46) (4.75)

ABLTP 0.132 2.025

(2.02) (2.06)

INTR 0.219 1.478

(2.78) (2.96)

WATDEPTH -0.4 -6.972

(-3.11) (-3.7)

λ 0.172

(0.000)c

θ 0.203

(0.000) c

R2 0.918 0.943

Log-likelihood -2907.2 -2886.53

H0: θ=λ=0d, Chi-sq=41.34, p>Chi-sq = 0.000

H0: θ=λ=1, Chi-sq=437.32, p>Chi-sq = 0.000

Table 7. Total Natural Gas Distribution Cost 
Function Estimates (n=190)
a Selected model
b t-statistics in parentheses
c p-value 
d Log-likelihood test result

Elasticity Sample Mean
εNRG 0.154
εSRG 0.461
εSCIG 0.067
εPFUEL 1.853
εABLTP 0.110
εINTR 0.187
εWATDEPTH -0.344Table 8. Natural Gas Distribution Cost 

Elasticities at the Sample Mean
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Changes in economies of scale are analyzed for the minimum, mean, and 
maximum levels of fuel price, built-up area, number of intersections, and 
water table depth, at the mean residential customer size level ZRG= 106.2 
(Figure 8). In all cases, εCG ∈ [0.70 – 0.85]. The curves for built-up area and 
number of intersections are similar, but with different ranges. Varying 
the built-up area yields εCG values ranging between 0.70 and 0.85, while 
varying the number of street intersections yields εCG ∈ [0.60 – 0.90]. The 
minimum built-up area and the minimum number of street intersections 
yield the lowest economies of scales (highest curves). Expanding output 
while simultaneously expanding territory under such conditions may be 
expensive and provides little room for economies of scale. The water table 

Figure 7. Economies of Scale for Gas 
Distribution, εCG, versus Output Parameter k.

Figure 8. Economies of Scale, εCG, versus 
Output Parameter k, for Different Levels 
of the Following Variables: (a) Fuel Price, 
(b) Built-up Area, (c) Number of Street 
Intersections, (d) Water Table Depth.
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depth has an outlier maximum value of 5.74. A water table far from the 
surface leads to lower costs, and it becomes hard to decrease costs further, 
whereas in areas with a water table close to the surface costs are high, thus 
cost reductions are more achievable. The minimum fuel price yields a lower 
level of εCG, around 0.84. 

The economies of density, εDG, represent the effects of both service 
densification and expansion. The elasticity of built-up area is removed from 
Eq. (21) to capture the effect of densification, with:

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG				    (21)

Using the Box-Cox function in Table 7, Eq. (21) becomes:

 								        (22)

								      

The value of εDG at the sample mean is 0.682. Economies of density are also 
calculated for each tax district, with minimum, maximum and average 
values at 0.496, 0.930, and 0.697, respectively. Economies of density never 
exceed 1. 

The variations of εDG with k are analyzed for the minimum, mean and 
maximum values of residential customer size, ZRG (Figure 9). The 
maximum and mean average customer sizes yield economies of density 
levels very close to each other. Economies of density are greater for higher 
customer sizes. In a given market k, increasing ZRG means decreasing the 
number of customers, which probably provides savings through easier 
hook-up of new infill customers.  

The economies of density for different levels of the other variables are 
presented in Figure 10. In all cases, the mean customer size, ZRGmean, is 
used. Larger built-up areas benefit more from densification than smaller 
ones, possibly because of better hook-up opportunities for infill customers. 
The rankings of the elasticity curves for fuel price, number of street 
intersections, and water table depth are similar to those observed in the 
case of expansion without densification, and the same interpretations of the 
results apply here. 

1 

 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸) = 0          (1) 

𝑓𝑓(𝑸𝑸, 𝐿𝐿, 𝐾𝐾, 𝐸𝐸, 𝑺𝑺𝑺𝑺) = 0          (2) 

𝐶𝐶(𝑸𝑸, 𝑷𝑷, 𝑺𝑺𝑺𝑺) = 𝑃𝑃𝐾𝐾𝐾𝐾∗ + 𝑃𝑃𝐿𝐿𝐿𝐿∗ + 𝑃𝑃𝐸𝐸𝐸𝐸∗         (4) 

CK(Q, P, SH) = pKK*(Q, P, SH)        (5) 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑥𝑥1 + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑥𝑥2 … + 𝛼𝛼𝑛𝑛𝑙𝑙𝑙𝑙𝑥𝑥𝑛𝑛 + 𝑢𝑢       (7) 

y(θ)=α0+α1x1
(λ)+α2x2

(λ)+…+αmxm
(λ)+γ1z1+…+γlzl+ϵ     (8) 

 𝑦𝑦(𝜃𝜃) = (𝑌𝑌𝜃𝜃 − 1)/𝜃𝜃      and  𝑥𝑥𝑚𝑚
(𝜆𝜆) = (𝑋𝑋𝑚𝑚

𝜆𝜆 − 1)/𝜆𝜆         (9) 

The variables 𝑧𝑧1 … 𝑧𝑧𝑙𝑙 are not B-C transformed.  

The cost elasticity (𝜀𝜀𝑋𝑋𝑖𝑖)  in the log-log form is the coefficient 𝛼𝛼𝑖𝑖 of the corresponding independent 

variable, and is constant. The cost elasticity in the case of the Box-Cox equation, on the other hand, is a 

function which varies with different input/output values:   

𝜀𝜀𝑋𝑋𝑖𝑖 = (𝜕𝜕𝜕𝜕/𝜕𝜕𝑋𝑋𝑖𝑖) ∗ (𝑋𝑋𝑖𝑖/𝑌𝑌) = 𝛼𝛼𝑖𝑖(𝑋𝑋𝑖𝑖
𝜆𝜆/𝑌𝑌𝜃𝜃)        (10) 

 

the cost elasticites = 1/ ∑ 𝜀𝜀𝑋𝑋𝑖𝑖) 

𝜀𝜀𝑅𝑅 =  ∑ 𝜀𝜀𝑋𝑋𝑖𝑖            (11)  

densification if 𝜀𝜀𝐷𝐷 < 1, with:  

 

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087]/𝐶𝐶𝐸𝐸

0.09     (15) 

 

εDE = εCE + εDENSA                (16) 

Using the Box-Cox function in Table 4, Equation (16) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.655 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.087 + 0.424 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.087 + 0.121 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.087 − 0. 307𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴

0.087]/𝐶𝐶𝐸𝐸
0.09   (17) 

   

𝜀𝜀𝐶𝐶𝐶𝐶 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 + 2.025 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

0.172 ]/𝐶𝐶𝐸𝐸
0.203   (20) 

εDG = εCG - εABLTP = εNRG + εSRG + εSCIG       (21) 

Using the Box-Cox function in Table 7, Eq. (21) becomes: 

𝜀𝜀𝐷𝐷𝐷𝐷 = [0.916 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅
0.172 + 1.256 ∗ 𝑆𝑆𝑅𝑅𝑅𝑅

0.172 + 0.192 ∗ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶
0.172 ]/𝐶𝐶𝐸𝐸

0.203     (22) 

Figure 9. Economies of Density for Gas 
Distribution, εDG, versus Output Parameter k.



MÜZEYYEN ANIL ŞENYEL and JEAN-MICHEL GULDMANN80 METU JFA 2016/1

CONCLUSIONS

This research has demonstrated that the capital costs of electricity and 
natural gas distribution depend on site-specific and socio-economic 
characteristics, as well as on output values and input prices, and the 
Box-Cox functional form is superior to the log-log and linear forms in all 
cases. The number of residential customers, residential sales, commercial-
industrial sales, and fuel prices are significant for both electricity and 
natural gas capital costs, and all these variables have positive coefficients, 
which is consistent with earlier research. 

The number of street intersections and the depth of the water table are the 
site-specific urban and geographic related variables that are also common 
to both models. The number of street intersections has a positive coefficient, 
as more intersections are likely to complicate network construction. The 
depth of the water table, on the other hand, is inversely related to costs, 
since a decreasing depth increases the need for drainage, and hence 
increases costs. 

The number of street intersections and the depth of the water table are 
the site-specific urban and geographic variables that are also common to 
both models. The number of street intersections has a positive coefficient, 
as more intersections are likely to complicate network construction. The 
depth of the water table, on the other hand, is inversely related to costs, 
since a decreasing depth increases the need for drainage, and hence costs. 
Population density and soil corrosivity are statistically significant only in 
electricity distribution costs. Population density has a negative effect, since 
low-density areas with larger plots require longer conductor lines and 

Figure 10. Economies of Density, εDG, versus 
Output Parameter k, for Different Levels 
of the Following Variables: (a) Fuel Price, 
(b) Built-up Area, (c) Number of Street 
Intersections, (d) Water Table Depth.
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more associated equipment than high-density areas. Higher soil corrosivity 
requires special materials and use of conduits to protect lines and 
equipment, thus, leading to higher costs. The built-up area has a positive 
effect on natural gas capital investment only, meaning that for a given 
market, the larger the territory the lower the density, hence the higher the 
costs. This variable can be considered as a proxy for density. 

Very slight economies of scale are observed for electricity distribution 
in the case of market expansion at constant density. However, stronger 
economies are achieved with market densification. Changes in economies 
of scale and density have been assessed for different levels of market 
size, customer size, fuel price, and site-specific variables. Higher fuel 
prices, lower population density, higher soil corrosivity, lower water table 
depth and more street intersections lead to higher economies of scale and 
higher economies of density in electricity distribution. When site specific 
conditions are more favorable (for instance low corrosivity, deep water 
table, and fewer street intersections), costs are already low, and there is less 
room for further economic gains from output increase or densification. 

Stronger economies of scale and economies of density are observed in the 
case of natural gas distribution. Higher fuel prices, larger built-up areas, 
lower water table depth, and more street intersections allow for more cost 
reductions, and also higher levels of economies of density in natural gas 
distribution. In case of less favorable site-specific conditions (for instance a 
low water table depth and more street intersections) there is more room for 
gains from output increase or densifications.  

To sum up, site specific urban and geographical factors should be 
considered in energy distribution investments. Dispersed and low density 
urban development tends to increase energy infrastructure investment 
costs. Moreover, soil conditions should be taken into account such that 
areas with lower water table depth and corrosive lands add more costs 
to construction. Finally, diseconomies of scale and density have not been 
observed in any output combinations at different levels of variables 
in electricity and natural gas, implying that competition is not an 
economically reasonable strategy for both sectors. Electricity and natural 
gas urban distribution networks always retain the characteristics of natural 
monopolies that should be regulated by public authorities.

List of Symbols and Abbreviations

ε: Elasticity 
ABLTP: Built-up area
Box-Cox: Transformation operation developed by George Box and 
David Cox to enable to define regression parameter(s) for both dependent 
variable and independent variables 
CE: Capital cost of electricity
CG: Capital cost of natural gas
CH: Central Hudson Gas and Electricity Company
CK: Capital investment cost
COMPi = Vector of company-specific variables for system i
DEM: Digital elevation models
DENSA: Population density of the tax district
E: Energy input
Eq.: Equation
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ESRI: Environmental Systems Research Institute 
f: function 
G = Vector of geographic variables,
GIRAS: Geographic Information Retrieval and Analysis System
GIS: Geographic Information Systems
INTR: Number of street intersections 
K*, L*, E*: Optimal input values
K: Capital input
k: market size
Kwh: Kilowatt-hour
L: Labor input
LILCO: Long Island Lighting Company
log-log: Logarithm of the variables are applied in both sides of cost function
MCD: Minor civil divisions including cities, villages, and towns
mcf: volume of thousand cubic feet of natural gas
min C: Function that minimizes costs
NM: Niagara Mohawk Power Corporation
NR : Number of residential customers
NYS: State of New York
NYSDEA: New York State Division of Equalization and Assessment 
OR: Orange and Rockland Utilities
P: Vector of input prices
p: Input price
PFUEL: Price of fuel 
Q: Vector of outputs, including sales and number of customers in different 
sectors.
SCI: Sales to commercial-industrial customers
SH: Vector of socio-economic and site-specific characteristics
SITE = Vector of site-specific variables in that specific tax district
SOILCORR: Soil corrosivity 

SR: Sales to residential customers
STATSGO: The State Soil Geographic Database of the U.S. Department of 
Agriculture
U.S.: United States
USGS: The United States Geological Survey
WATDEPTH: Depth of water table
Z : Customer size, which is ratio of sales to number of customers
θ: Box-Cox parameter for the dependent variable
λ: Box-Cox parameter for the independent variables
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GEOGRAPHY AND THE CAPITAL INVESTMENT COSTS OF URBAN 
ENERGY INFRASTRUCTURE: THE CASE OF ELECTRICITY AND 
NATURAL GAS NETWORKS 

Urban infrastructures are characterized by considerably high investment 
costs, which make investments almost irreversible. Once the construction 
is completed, it is difficult and expensive to modify the systems. Therefore 
a detailed cost analysis should be carried out in advance, to prevent 
unprecedented future charges and provide reliable infrastructure services. 
This study aims to reveal the economic characteristics of urban energy 
(electricity and natural gas) distribution systems’ investment costs using 
(1) capital investment costs at the local level; (2) outputs such as sectoral 
numbers of customers and energy sales, and input prices; (3) company-
specific characteristics of energy distribution firms; and (4) socio-economic 
and site-specific urban and geographic variables. However, the fourth 
group variables have often been neglected in the literature, although 
the impacts of such variables are expected to be highly relevant. In this 
study, an econometric approach has been utilized for cost analysis. 
Regression models tested both log-log and the Box-Cox forms, while the 
Box-Cox regression model, as a flexible form allowing for the endogenous 
determination of the parameters, gave better results.  Regression estimates 
show that besides the output and input variables, and company-specific 
variables, socio-economic and site-specific urban and geographic 
variables have statistically significant effects on electricity and natural 
gas distribution capital investment costs. Moreover the results provide 
evidence for economies of scale and density in these distribution systems 
under various configurations of market size and local conditions.

KENTSEL ENERJİ ALTYAPISININ COĞRAFİ ÖZELLİKLERİ VE 
SERMAYE YATIRIM MALİYETLERİ: ELEKTRİK VE DOĞAL GAZ 
ŞEBEKELERİ ÜZERİNE BİR ÇALIŞMA 

Kentsel altyapı oldukça yüksek maliyetlerle betimlenir ve bu durum, 
yatırımları neredeyse geri alınamaz kılar. Yapım tamamlandığında 
sistemlerde değişiklik yapmak oldukça zor ve masraflıdır. Bu nedenle, 
yatırım öncesinde ileride karşılaşılabilecek beklenmeyen maddi yüklerin 
önlenmesi ve güvenilir altyapı hizmetlerinin sağlanması için ayrıntılı bir 
maliyet çözümlemesi yapılmalıdır. Bu çalışma, kentsel enerji (elektrik ve 
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doğal gaz) dağıtım sistemleri yatırım maliyetlerinin (1) yerel düzeyde 
sermaye yatırım maliyetleri; (2) sektörel kullanıcı sayısı ve enerji satış 
miktarları gibi çıktılar ile girdiler; (3) dağıtım şirketlerinin kendilerine 
özgü nitelikleri; ve (4) sosyo-ekonomik ve yerleşimlere özgü kentsel 
ve coğrafi değişkenler kullanılarak açıklanmasını amaçlamaktadır. Ne 
var ki literatürde, dördüncü grup değişkenlerinin etkilerinin oldukça 
anlamlı olması beklenmesine rağmen, bu değişkenler göz ardı edilmiştir. 
Bu çalışmada maliyet analizinde ekonometrik bir yaklaşım izlenmiştir. 
Regresyon modellerinde hem log-log hem de Box-Cox formları denenmiş 
ve  parametrelerin içsel belirlenmesine izin veren esnek bir form olan Box-
Cox regresyon modelinin daha iyi sonuç verdiği görülmüştür. Regresyon 
kestirimleri; girdi ve çıktı değişkenleri ile şirkete özgü değişkenlerin yanı 
sıra, sosyo-ekonomik ve yerleşimlere özgü kentsel ve coğrafi değişkenlerin 
de elektrik ve doğalgaz dağıtım sistemleri sermaye yatırım maliyetlerine 
istatistiki olarak anlamlı etkileri olduğunu göstermektedir. Ayrıca sonuçlar, 
dağıtım sistemlerinde piyasa büyüklükleri ve yerel koşulların farklı 
şekillenmelerinde ölçek ekonomileri ve yoğunluk ekonomilerinin varlığına 
ilişkin de bulgular da sunmaktadır. 
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