
AN INNOVATIVE DESIGN EDUCATION APPROACH METU JFA 2007/2 159

This paper describes an innovative design education approach developed
to explore new intellectual and theoretical directions of design generation.
It utilizes algorithms as a tool for introducing the concept of design
computing to graduate students of architecture. The graduate course titled
“Designing the Design” is thus developed. The aim of the course is to
introduce to the students of architecture the computational design thinking
and the new emerging language and method of designing. Examples from
the course process are given to illustrate explorations in this new auxiliary
teaching method of the design.

INTRODUCTION

Computation deals with solving problems on a computational model using
an algorithm. Within this definition design computation deals with solving
design problems on a computational model. Any design problem that can
be described as computational model, in other words as an abstract model
in which the problem is represented with a set of variables and a set of
logical relationships between them can be solved by using computational
techniques.

In the realm of architecture, computational design has emerged as a
sub-discipline of architecture which is multidisciplinary in nature and
uses advanced computing capabilities to understand and solve complex
problems of the architectural design. It provides methods for an architect/
designer in harnessing a more deliberate and conscious thought process in
the design.

Computational design approach in education was first introduced by
Mitchell, Ligget and Kvan in The Art of Computer Graphics Programming
(1987). This book created a source of inspiration for a new research area
that explores computational design teaching models (Yakeley, 2000; Celani,
2002) in architecture. New design courses that aim to investigating and

AN INNOVATIVE DESIGN EDUCATION APPROACH:
COMPUTATIONAL DESIGN TEACHING 			
FOR ARCHITECTURE
Birgül ÇOLAKOĞLU and Tuğrul YAZAR

Received: 20.09.2007

Keywords: computational design thinking;
computational design; algorithmic thinking;
computational design education.

METU JFA 2007/2
(24:2)

BİRGÜL ÇOLAKOĞLU and TUĞRUL YAZAR160 METU JFA 2007/2

exploring the process and theories of computational design have been
developed (Nagakura, 1998; Terzidis, 2002; Celani, 2004; Duarte, 2007).

 The objective of Nagakura’s Formal Design Knowledge and Programmed
Constructs course was stated as “…to provide students practical and
theoretical foundations to explore computational issues relevant to
representation of architectural forms and design knowledge (Nagakura,
1998). Students were taught basic concepts of programming language
in AutoLisp, the scripting language of Autocad. The aim of Terzidis’
Algorithmic Architecture course was stated as “…to develop algorithms and
computational methods that would encapsulate the process that lead to
the generation of meaningful architectural form.” (Terzidis, 2002) In this
course, for the codification of design intention scripting languages available
in 3D packages (i.e. Maya embedded scripting language MEL, 3Dmax
Script) were used. Celani’s experimental course CADCreativo aimed to
explore the use of logical operation in design and the use of CAD not only
as representational tool but rather as an explorative, customizable design
aide for the creative process. The CAD software used in this course was
AUTOCAD 2000 with included VBA development environment. Duarte’s
CAD II: Programming and Digital Fabrication course introduces “... the
theoretical and practical fundamentals for the exploration of computational
aspects of architectural form and knowledge” (Duarte, 2007). The basic
concepts of programming are introduced by using Autolisp in Autocad.

The course described in this paper is in line with the above mentioned
courses. However, it distinguishes from them by putting emphasis on the
computational thinking rather than just mere algorithm developments
that lead to the generation of a meaningful architectural form. It points
out that computational thinking is not only programming but rather
conceptualizing that operates in the multiple layers of abstraction
simultaneously.

COMPUTATIONAL DESIGN FOR ARCHITECTURE

The concept of computational design thinking is related to algorithmic
thinking that architects use in their design process rather than the tools
they use. It involves an algorithmic logic that is deterministic, rational,
consistent and systematized. Most algorithms are symbolic and are used to
automate manual methods by means of formal languages. Computational
design thinking is described as being algorithmic. Computational design
systems and techniques are derived on the base of computational design
thinking.

Practices such as Gehry Associates and Foster Partners are establishing
Research and Development teams to look at computational techniques and
their possible impact on design capability. Architects that are driven by
this are exploring new computational design methodologies/languages
that allow them to go beyond the mouse screen interaction, into the logic
of formal language (Goulthorpe, 2003; Cache, 2003). They are discovering
non-visual or numerically driven methods of computation which assist and
enhance their designs. They use design systems to calculate a façade, apply
transformation equation to a surface or to measure building performances
under various conditions. To do this, architects have to have explicit
knowledge of how to use the design system. This is a challenging new task

AN INNOVATIVE DESIGN EDUCATION APPROACH METU JFA 2007/2 161

in educating an architect, as the students of architecture need to be taught
the basics of programming and logical approach to a problem solving.

 Programming imposes esoteric computational laws on architecturally
trained designer therefore expecting an architect to be a programmer
would be unrealistic. However, architects that are driven by ideas instead
of technology can develop casual programmer skills (Ousterhoud, 1998)
that allow them to go beyond object manipulation into a creative use of
computer.

The alternative to a programming language can be the scripting language
that is relaying on the components of higher level programming language
and gluing them together (Ousterhoud, 1998). Scripting languages are used
for rapid development of a program, connecting and creating relationship
of different parts within the program. The syntax and semantics of
a scripting language are simpler to understand and develop for non
programmer therefore it is used by designers to customize software to
achieve the benefit of new tools and material with computer technology.

DESIGNING THE DESIGN: 					
COMPUTING FOR ARCHITECTURE COURSE

Recent theories of form in architecture focused on computational
explorations and expressions of how we teach design. Barts Lootsma in
“Hybrid Space” (Zelner, 1999) speaks of the new direction in architecture:
“instead of trying to validate conventional architectural thinking in a
different realm our strategy today should be to infiltrate architecture with
other media and disciplines to produce crossbreed.”

Following these concerns the graduate course “Designing the Design”
is developed reconsidering relationships between computational design
thinking, design computing and digital design. It aims to introduce
students with computational design thinking and tools to explore the new
methods of designing. The creative use of computer scripting is being used
to mechanize the abstraction layers and their relation in computational
design thinking.

The course is developed in two modules: the first describes the concept of
computational design. It includes an introduction to computational design
thinking and formal languages. It discusses new computational methods
of formal exploration and expression of design. The second module
introduces the students with algorithms and scripting through exercises
described below.

USING ALGORITHMS AND SCRIPTING AS DESIGN TOOL 	
IN ARCHITECTURAL EDUCATION

This module involves the codification of design intention through
algorithmic scripts built on top of existing CAD systems. It includes class
and home exercises and a final project. The exercises start with abstract
forms and their computation then focus on various architectural problems.
3dMax scripting environment is used as a design tool for teaching
algorithmic logic and scripting.

First, the students are introduced with principles of programming logic
through class exercises.

• 	 Syntax of computer programming,
• 	 Program flow, (loops and conditional statements),

BİRGÜL ÇOLAKOĞLU and TUĞRUL YAZAR162 METU JFA 2007/2

• 	 Variables, operators and transformations,
• 	 Custom functions and built-in features of the script language.

Figure 1 and Figure 2 illustrate such exercises.

Figure 3 illustrates an exercise that particularly focuses on geometric
problem-solving. It asks students to define a function that paints randomly
distributed spheres in relation to the boundaries of a parametric box.
Spheres that run over the box are painted red, and the spheres that are
inside the box are painted white.

Once the students gain experience in scripting through exercises in the
next phase, abstract objects are replaced with architectural objects. Here,
they are introduced with the parametric structure in CAD tools. Three such
exercises are explained below:

The first exercise aims to teach the logic of relational geometry. In this
exercise, students are asked to develop a scripted function that creates
frame structures consisting of columns that are related with varying floor
dimensions.

As students develop the function, they realize a relationship between
certain parameters (minimum thickness of columns, maximum dimensions

Figure 1. An introductory exercise. The script
code and output.

Figure 2. An introductory form-finding
exercise. The script code and two
randomized outputs.

AN INNOVATIVE DESIGN EDUCATION APPROACH METU JFA 2007/2 163

of floors, etc.) and the materialization process of their architectural
counterparts.

After defining the function, students keep playing with their script
entering random or user-defined parameters. Figure 4 illustrates students’
experiments.

The second exercise introduces the parametric design. Students are asked
to develop a scripted function that opens circular holes (windows) on any
given box object (wall). The only parameter of the function is the number
of holes to be opened. As the box dimensions vary, students deal with
geometric and arithmetic problems. Some outputs of this function are
illustrated in Figure 5.

The third exercise introduces object-oriented logic. It consists of two parts.
In the first part, students design a parametric theater chair illustrated in
Figure 6. In the second, they design a parametric theater that uses the chair
object designed in the first part.

Figure 3. An introductory problem-
solving exercise. The script code and two
randomized outputs.

Figure 4. Scripted function that creates
frame structures and it’s executions with
randomized inputs.

BİRGÜL ÇOLAKOĞLU and TUĞRUL YAZAR164 METU JFA 2007/2

Figure 5. Script code and some results of the
function.

Figure 6. Generation process of the
parametric theater chair and it’s scripted
function.

Figure 7. Explanation of the loop, defining
theater seating positions.

AN INNOVATIVE DESIGN EDUCATION APPROACH METU JFA 2007/2 165

The function that describes theater chair can be called from another
script by entering general parameters, leaving all other parameters to
be calculated automatically through relational geometry. This exercise
introduces students with open source coding and the importance of object
databases for CAD tools. In the second part of this exercise, students learn
the benefits of this logic by using their custom object class in another script.

The second part of the exercise is designing the theater seating. The
parameter inputs of the function given above are the total capacity, and at
least one dimension (depth or width) of the theater. The students should
define various constraints like maximum depth of a theater, maximum
number of chairs between two corridors etc. The script creates a basic
model of theater seating and calls the calculated number of chairs with
correct dimensions to appropriate positions. In order to calculate the
number and the position of seats, students have to create a calculation
algorithm. As shown in Figure 7, two program loops are created (j’th seat
in i’th row) to set the positions of the chairs one by one. Various parameters
like rowHeight, rowWidth or seatWidth are used to define chair positions
multiplying with i or j. Two different theater seating compositions are
illustrated in Figure 8.

After students gain the experience with predefined exercises, they are
assigned for a final design project of their own. They are asked to define
a computational design problem and a solution in which they will use the
knowledge and skills gained in the exercises. The final projects include
following phases:

• 	 Statement of a need, providing a design problem with an
architectural counterpart,

• 	 Formal analysis phase, including typological categorization,

• 	 A design brief, developed by selecting a particular category,

• 	 Parameterization, resolving the design brief and exploring
variations,

• 	 Utilization, coding the hypothetical design using the parameters,

• 	 Testing the code, evaluating it’s expected benefit, performance and
usability,

• 	 Returning to the parameterization or utilization phase if necessary.

Four groups of students (each consisting of two students) developed their
own final project. An example of final group work is explained below.
The design problem defined for the final project by the project Group 1
(students are Uğur Işık and Eda Erkan Altunbaş) is a parametric canopy

Figure 8. Some different theaters created by
the function.

BİRGÜL ÇOLAKOĞLU and TUĞRUL YAZAR166 METU JFA 2007/2

design. In the formal analysis phase, the group first did research on
canopy typology (Figure 9), and then selected a single support canopy for
parameterization (Figure 10).

In the parameterization phase, students defined six main parameters of
a canopy design shown in Figure 10. These parameters are span of the
canopy, total arcade length, beam height, height and thickness of strings,
height of columns and the Boolean parameter of whether the canopy is two
sided or one sided. After defining the constraints between the parameters
the student group coded the script that creates parametric canopy designs.

The script interacts with the user by a graphical interface while it creates
desired canopy structures by only a few mouse clicks. In Figure 11, the
graphical user interface of the canopy script is illustrated. In the test phase
of the project, students discussed with other groups and experimented

Figure 9. Typological analysis.

Figure 10. The design outline for the final
project.

Figure 11. Graphical user interface of the
student project.

AN INNOVATIVE DESIGN EDUCATION APPROACH METU JFA 2007/2 167

with each other’s project, evaluating the usability of the script and the
reasonability of its outputs.

CONCLUSION

The last generation digital design tools provide both a programmatic and
visual way of building geometry that can be used to interactively control
the computational design model. They are concerned with complex
geometry; they apply complex user-defined computations to a design and
control it. A designer in order to use these tools in an explorative design
context needs to be ‘geometrically aware’ and ‘computationally enabled’
(Aish, 2005). The traditional architectural education does not put any
effort to keep up with the rapid change of the digital technology and the
computational theory behind it. While computational design is progressing
with the full speed, a gap between the architectural education and this new
realm of design still exist.

Designing the Design” is an exploratory course that aims to fill the gap in
the architectural education between the prospective architect and his/her
design tool by introducing the logic and the mechanism on which these
tools operate. It introduces students with computational thinking and the
mechanization of it in the realm of design.

The course is structured following developmental pedagogy. First
students are introduced with computational thinking that is abstract,
recursive, onward, procedural and logical. And then they are navigated to
understand its automation, the mechanization of layers of abstraction, and
their relationship using formal language. Simple exercises, complexity of
which were raised step by step, are constructed to teach the automation of
computational design thinking.

Computational design tools do not provide a designerly way of doing
as does the intelligence acquired through design experience. However,
they spread computational thinking which takes an approach to solving
design problems and designing systems based on concepts fundamental to
computer science. They are auxiliary design tools in which the design, from
concept till production, can be controlled.

The course emphasizes that computational thinking will be a fundamental
skill to be used by designers in the near future.

REFERENCES

AISH, R. (2005) From Intuition to Precision, Education of Computer-aided
Architectural Design in Europe, (eCAADe) 23.

CACHE, B. (2003) Towards a Fully Associative Architecture, Architecture in
Digital Age -Design and Manufacturing, Kolarevic, B., ed., Routledge:
Taylor and Francis.

CELANI, G. (2002) Beyond Analysis and Representation in CAD: a New
Computational Approach to Design Education, unpublished Ph.D.
thesis submitted to Department of Architecture, MIT.

CELANI, G. (2002) CAD- The Creative Side - An Educational Experiment
that Aims at Changing Students’ Attitude in the Use of Computer-
Aided Design, SIGraDi 2002.

CELANI, G. (2004) The Symmetry Exercise: Using an Old Tool in a New
Way, SIGraDi 2004.

BİRGÜL ÇOLAKOĞLU and TUĞRUL YAZAR168 METU JFA 2007/2

DUARTE, J. (2007) Inserting New Technologies in Undergraduate
Architectural Curricula, Predicting the Future 25th eCAADe Conference
Proceedings.

GOULTHORPE, M. (2003) “Scott Points: Exploring Principles of Digital
Creativity,” in Architecture in Digital Age-Design and Manufacturing,
Kolarevic, B., ed., Routledge: Taylor and Francis.

MITCHELL, W.J., LIGGET, R.S and KVAN, T. (1987) The Art of Computer
Graphics Programming, Van Nostrand Reinhold, NY.

NAGAKURA, T. (1998) Formal Design Knowledge and Programmed Construct,
course thought at MIT, http://cat2.mit.edu/arc/4.207/.

OUSTERHOUD, J. K. (1998) “Scripting: Higher Level Programming for the
21st Century”, IEEE Computer.

TERZIDIS, K. (2002) Algorithmic Architecture, course thought at GDS
Harvard, http://www.gsd.harvard.edu/cgi-bin/courses/details.
cgi?section_id=6847&term=f2004.

YAKELEY, M. (2000) “Digitally Mediated Design: Using Computer
Programming to Develop a Personal Design Process,” unpublished
Ph.D. thesis submitted to Department of Architecture, MIT.

ZELNER, P. (1999) Hybrid Space: Generative Form and Digital Architecture,
Rizolli Inti Publications.

TASARIM EĞİTİMİNE YENİ BİR YAKLAŞIM: MİMARLIKTA
HESAPLAMALI TASARIM ÖĞRETİMİ

Bu makale “Tasarımı Tasarlamak” adlı deneysel tasarım atölyesi eğitimini
anlatmaktadır. Atölyede algoritma, mimarlık öğrencilerini bilgi-işlemsel
tasarım mantığı ile tanıştırmak için araç olarak kullanılmıştır. Atölyenin
amacı mimarlık öğrencilerini bilgi-işlemsel tasarım mantığı ve yeni tasarım
dili ve yapma yöntemi ile tanıştırmaktır. Tasarım sürecini destekleyici olan
bu yöntemin tasarım eğitimine entegre edilmesi ile ilgili yapılan deneysel
çalışmalar atölye sürecinden örnekler verilerek anlatılmıştır.

Alındı: 20.09.2007

Anahtar Sözcükler: bilgi-işlemsel tasarım
düşüncesi; bilgi-işlemsel tasarım; algoritmik
düşünce; bilgi-işlemsel tasarım eğitimi.

